Scaling Object Detection up to More Categories

Y. Lu, B. Xiao, Z. Gong, X. Zhang, H. Guo, L. Wen **Bytedance Al Lab**

- More object categories: 80 -> 365
- More training images: 11W -> 60W
- More data \rightarrow more gains
- But...

Object365 dataset has a longer tail

Class ID (sorted by # instances)

Class instance distribution of Object365 2250000 1687500 number of instances 1125000 long tail 562500 0 **In ByteDance** class ID

Class imbalance problem is more severe on Object365

	COCO	Object365
Max #Instance	262465	2120895
Min #Instance	198	28
Max / Min	1326	75746

- More object classes: 80 -> 365
- More training images: 11W -> 60W
- But longer tail and more imbalance data
- What if we simply apply COCO models onto 365 classes?

- mAP of 44.7 on COCO \bigcirc
- Achieve only mAP of 29.5 on the validation set of Object365

[1] Cai Z, Vasconcelos N. Cascade r-cnn: Delving into high quality object detection. CVPR 2018. [2] Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks. CVPR 2017.

Start from Cascade R-CNN [1] with ResNext101 64x4d [2] backbone

by ByteDance

Class AP distribution on Object365

The AP is worse for the classes with less instances

Class AP Distribution on Object365

A detailed look on class 301-365

• 39 out of 65 classes has 0 AP !

AP of Class 301-365

Class ID

A detailed look on class 301-365

• Zero AP classes: okra, scallop, pitaya

Most small things with heavy clustering

hal ByteDance

A detailed look on class 301-365 High AP classes: donkey, polar bear, seal

Most animals, with large scales and simple appearance

h ByteDance

Possible solutions

- Expert models
- Data distribution resampling

Expert models

- Fine-tuning the full classes model on class 301-365
- mAP on Class 301-365: 18.4 → **29.5***
 - APs of **46** classes increase \bigcirc

Class ID

Expert models

Introducing expert models improves overall mAP by 1.1

- Expert 1: 301-365 classes \bigcirc
- Expert 2: 151-300 classes \bigcirc

	mAP
	29.6
	29.9
t 2	30.7

Data distribution resampling

Down-sample classes with huge number of instances

Number of Instances of Class 151-365

Class ID

Data distribution resampling

- Down-sample classes with huge number of instances
 - mAP of Class 301-365: 18.4 -> 23.3* \bigcirc
 - overall mAP: 31.3 -> 31.0 \bigcirc
- No gain on overall mAP

mAP on validation set

A better pretrained backbone improves mAP by 0.6

mAP on validation set

31.3 +0.6

Multi-scale training improves mAP by 0.9

mAP on validation set

hul ByteDance

Multi-scale testing and soft NMS improve mAP by 1.4

Model ensemble improves mAP by 0.9

Tiny track experiments

- Pretraining on Full Track dataset improves mAP by 4.2

Baseline: Cascade R-CNN with ResNext101 64x4d pretrained on COCO

mAP on validation set of Tiny Track

pretrained on Full Track

Tiny track experiments

Other tricks improve mAP by 5.3

hul ByteDance

Our final results

Validation set (Full tra

Test set (Full track

Validation set (Tiny tr

Test set (Tiny track

	mAP	
ack)	34.5	
k)	31.1	
rack)	34.8	
k)	27.4	

Experiment details

Basic setting

- Cascade R-CNN with 3 stages \bigcirc
- FPN \bigcirc
- Deformable convolution \bigcirc

Backbones

- ResNeXt 101 64x4d / 32x8d \bigcirc
- SENet154 \bigcirc
- Resnet152 \bigcirc

Training Pipeline and settings

- ImageNet pre-train \rightarrow COCO pre-train for 12 epochs \bigcirc
- \bigcirc
- Tiny Track: fine-tuning for 10 epochs (Ir 0.1 for 4 epochs, 0.01 for 6 epochs) \bigcirc
- Batch size: 80 (2 imgs/GPU * 40 GPUs) \bigcirc

Full Track: training for 20 epochs (Ir 0.1 for 6 epochs, 0.01 for 10 epochs, 0.001 for 4 epochs)

Conclusion

- **Data distribution matters**
 - Long tail distribution greatly degrades the overall performance \bigcirc
- Expert helps general model
 - Expert model can improve APs for long tail classes \bigcirc
- General model also helps expert
 - Large data pre-training helps the learning of long tail classes \bigcirc
- Long tail problem for object detection has not been solved

by ByteDance

We are hiring!

areas (@Beijing, Shanghai, Shenzhen):

Machine learning, natural language processing, computer vision, speech recognition and synthesis, and distributed systems.

Email:lab-hr@bytedance.com

THANKS.

ByteDance

