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Modeling Spatial Transformations

* A long standing problem in computer vision
Part deformation:




Traditional Approaches

1) To build training datasets with sufficient desired variations

Scale Invariant Feature Transform (SIFT)  Deformable Part-based Model (DPM)
* Drawbacks: geometric transformations are assumed fixed and known,
hand-crafted design of invariant features and algorithms



Spatial transformations in CNNs

e Regular CNNs are inherently limited to model large unknown
transformations

* The limitation originates from the fixed geometric structures of CNN modules
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Spatial Transformer Networks
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Spatial Transformer Networks

* Parameterized Sampling Grid
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Spatial Transformer Networks

* Differentiable Image Sampling
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Spatial Transformer Networks

* Learning a global, parametric transformation on feature maps
* Prefixed transformation family, infeasible for complex vision tasks
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Highlights

* Enabling effective modeling of spatial transformation in ConvNets
* No additional supervision for learning spatial transformation

 Significant accuracy improvements on sophisticated vision tasks

Code is available at https://github.com/msracver/Deformable-ConvNets



Deformable Convolution

* Local, dense, non-parametric transformation
* Learning to deform the sampling locations in the convolution/Rol Pooling modules
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Deformable Convolution

2N
/ Regular convolution
~ 7]~ y(po) = »_ w(pn) x(po+ pn)
L g___>'\ ~ | PrnER
XA ™ Deformable convolution
offsets
v(po) = Z w(pn) - X(po + pn + Apn)

PnER

where APy, is generated by a sibling branch of
regular convolution

input feature map output feature map



Deformable Rol Pooling

Regular Rol pooling

s y(i,j)= Y x(po+p)/ny
- pEbin(i,j)
a4

Deformable Rol pooling

y(i,j)= > x(po+p+Apy)/ni

pebin(i,j)

i
) deformable Rol pooling where Ap;; is generated by a sibling fc branch

input feature map output roi feature map

deformable Rol Pooling



Deformable ConvNets

 Same input & output as the plain versions
e Regular convolution -> deformable convolution
e Regular Rol pooling -> deformable Rol pooling

* End-to-end trainable without additional supervision



Sampling Locations of Deformable Convolution
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Part Offsets in Deformable Rol Pooling




Object Detection on COCO (Test-dev)

* Deformable ConvNets v.s. regular ConvNets
* Noticeable improvements for varies baselines
* Marginal parameter & computation overhead
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Highlights

e Better understanding of deformation modeling in CNNs

* Reformulation of Deformable ConvNets to strengthen its deformation
modeling capability

* To harness the enhanced modeling capability, guide network training
via R-CNN feature mimicking

Core operators are available at https://github.com/msracver/Deformable-ConvNets



Analysis of Deformable ConvNet Behavior

* DCN v1 visualization: theoretical spatial support (sampling / bin location
only)

* DCN v2 visualization: effective spatial support (sampling / bin location &
learnable network weights)

* Effective sampling / bin locations
 Effective receptive fields [Luo et al., NIPS 2016]
* Error-bounded saliency regions

min||M ||,

st L NI, N (I M)) < e,



Analysis of Deformable ConvNet Behavior

 Spatial support of nodes in the last layer of the conv5 stage of ResNet-50
* Regular ConvNets can model geometric variations to some extent.

* By introducing deformable convolution, the network’s ability to model geometric
transformation is considerably enhanced, but still lacks.

(a) regular conv (b) deformable conv@conv3 stage (DCNv1)



Analysis of Deformable ConvNet Behavior

 Spatial support of the 2fc node in the per-Rol detection head

* By introducing deformable Rol pooling, the network’s ability to model geometric
transformation is enhanced, but still lacks.

high

(a) aligned Rolpooling, with deformable conv@conv3 stage (b) deformable Rolpooling, with deformable conv@conv3 stage (DCNv1)



Analysis of Deformable ConvNet Behavior

e Observations
* Regular ConvNets can model geometric variations to some extent.

* By introducing deformable convolution & deformable Rol pooling, the network’s
ability to model geometric transformation is considerably enhanced, but still
lacks.

* The three presented types of spatial support visualizations are more informative
than the sampling locations used in Deformable ConvNets v1 paper.

e What’s next?

» To upgrade Deformable ConvNets so that they can better focus on pertinent
image content and deliver greater accuracy



Stacking More Deformable Conv Layers

* To strengthen the geometric transformation modeling capability of
the entire network

(b) deformable conv@conv5 stage (DCNv1) (c) modulated deformable conv@conv3~35 stages (DCNv2)



Modulated Deformable Modules

* Not only adjust offsets in perceiving input features, but also modulate
the input feature amplitudes from different spatial locations / bins

e Modulated deformable Convolution
K

y(p) = > wi - x(p+ pr + Api) - Amy,
k=1

* Modulated deformable Rolpooling

ng

y(k) = 2(prj + Api) - Ay /1.

j=1



R-CNN Feature Mimicking

* Motivation

* Even with the strong geometry modeling capability, the spatial support of the
per-Rol node can still not focus on the Rol

* Additional guidance is needed to steer the training



R-CNN Feature Mimicking
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R-CNN Feature Mimicking

(c) modulated deformable Rolpooling, with modulated deformable (d) with R-CNN feature mimicking on setting (c) (DCNv2)
conv @conv3~5 stages



Ablation Experiments on Enriched Deformation

 Stacking more deformable conv layers and exploitation of modulation
mechanism effectively improve the accuracy

method | setting (shorter side 1000) Faster R-CINN Mask R-CNN
= AP TAPS™ APY™ AP | param FLOP [| AP AP™" | param FLOP
regular (Rolpooling) 32.1 149 375 444 |51.3M 326.7G -

baseline | regular (aligned Rolpooling) | 34.7 193 395 453 |51.3M 326.7G|| 36.6 322 |39.5M 447.5G
dconv@c5 + dpool (DCNv1) | 38.0 | 20.7 41.8 522 |527M 328.2G || 40.4 353 |40.9M 449.0G

dconv@c5 374 | 200 409 510 |51.5M 327.1G || 40.2 351 |39.8M 447.8G
enriched dcmw(tgli'chS 40.0 | 214 438 553 |5L.7TM 328.6G || 41.8 36.8 [40.0M 449.4G
deformation dcmw(t:l?'c?awcﬁ 404 | 21.6 442 56.2 |51.8M 330.6G|| 42.2 37.0 [40.1M 451.4G
dconv @c3~c5 + dpool 41.0 | 220 451 56.6 |53.0M 331.8G|| 424 37.0 [41.3M 452.5G
mdconv @c3~c5 + mdpool 41.7 | 222 458  58.7 |655M 346.2G || 43.1 37.3 |53.8M 461.1G

Table 1. Ablation study on enriched deformation modeling. The input images are of shorter side 1,000 pixels (default in paper). In
the setting column, “(m)dconv™ and *“(m)dpool™ stand for (modulated) deformable convolution and (modulated) deformable Rolpooling,
respectively. Also, “dconv@c3~c5” stands for applying deformable conv layers at stages conv3~conv3, for example. Results are reported
on the COCO 2017 validation set.



Ablation Experiments of R-CNN Feature
Mimicking

Faster Mask
R-CNN R-CNN
Apbbox Aphbox Apmﬂsk
None 41.7 43.1 37.3
mdconv3~5 + | FG & BG| 42.1 43.4
mdpool BG Only | 41.7 43.3
FG Only | 43.1 44.3
None 34.7 36.6
FG Only | 35.0 36.8
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Table 3. Ablation study on R-CNN feature mimicking. Results are
reported on the COCO 2017 validation set.
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Related Work

* Deformation Modeling

e SIFT [Lowe, ICCV 1999], ORB [Rublee et al., ICCV 2011], DPM [Felzenszwalb et
al., TPAMI 2010]

e Spatial Transformer Networks [Jaderberg et al., NIPS 2015], DeepID-Net
[Ouyang et al., CVPR 2015], etc.

e Relation Networks and Attention Modules

* Relation Modules in NLP [Gehring et al., ACL 2017], physical system modeling
[Battaglia et al., NIPS 2016]

* Relation networks for object detection [Hu et al., CVPR 2018], non-local
networks [Wang et al., CVPR 2018], Learning region features for object
detection [Gu et al., ECCV 2018]



Related Work

 Spatial Support Manipulation

e Atrous convolution [Chen et al., ICLR 2015], active convolution [Jeon and Kim,
CVPR 2017], multi-path network [Zagoruyko et al., BMVC 2016]

* Network Mimicking and Distillation
e [Ba and Caruana, NIPS 2014], [Hinton et al., STAT 2015], [Li et al., CVPR 2017]
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Conclusion

e Standard CNNs are not very well equipped to model deformations,
and transformations of the objects.

 Spatial Transformer Networks and Deformable ConvNets enabled
effective modeling of geometric deformation in CNNs

* Open questions:
* More effective manner to capture geometric deformation
e Disentangle different factors in geometric deformation
* Many more...



Q&A



