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I From COCO to Object365

More object categories: 80 -> 365
More training images: 11W -> 60W
More data — more gains

But...



From COCO to Object365

e Object365 dataset has a longer tail

Class instance distribution of COCO Class instance distribution of Object365
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From COCO to Object365

e C(lass imbalance problem is more severe on Object365

COCO Object365
Max #Instance 262465 2120895
Min #Instance 198 28
Max / Min 1326 75746




I From COCO to Object365

More object classes: 80 -> 365

More training images: 11W -> 60W

But longer tail and more imbalance data

What if we simply apply COCO models onto 365 classes?



I From COCO to Object365

o Start from Cascade R-CNN [1] with ResNext101 64x4d [2] backbone
o mAP of 44.7 on COCO

e Achieve only mAP of 29.5 on the validation set of Object365

[1] Cai Z, Vasconcelos N. Cascade r-cnn: Delving into high quality object detection. CVPR 2018.
[2] Xie S, Girshick R, Dollar P, et al. Aggregated residual transformations for deep neural networks. CVPR 2017.



l Class AP distribution on Object365

e [he AP is worse for the classes with less instances
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I A detailed look on class 301-365

e 39 outof 65 classes has O AP !
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I A detailed look on class 301-365

e Zero AP classes: okra, scallop, pitaya
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I A detailed look on class 301-365

e High AP classes: donkey, polar bear, seal

i -~
New England Aquarium /Zwww.neaq.org

Most animals, with large scales and simple appearance



I Possible solutions

e EXxpert models
e Data distribution resampling



Expert models

e Fine-tuning the full classes model on class 301-365
e mMAP on Class 301-365: 18.4 — 29.5*

o APs of 46 classes increase
AP of General Model and Expert Model on Class 301-365
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l Expert models

e Introducing expert models improves overall mAP by 1.1

o Expert 1: 301-365 classes
o Expert 2: 151-300 classes

Model mAP
General model 29.6
General + Expert 1 29.9

General + Expert 1 + Expert 2 30.7



l Data distribution resampling

e Down-sample classes with huge number of instances

Number of Instances of Class 151-365
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I Data distribution resampling

e Down-sample classes with huge number of instances

o mAP of Class 301-365: 18.4 -> 23.3*
o overall mAP: 31.3 -> 31.0

e No gain on overall mAP

* evaluated on tiny track val set



I Further improvement

MAP on validation set
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I Further improvement

e A better pretrained backbone improves mAP by 0.6

mAP on validation set
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I Further improvement

e Multi-scale training improves mAP by 0.9

mMAP on validation set
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I Further improvement

e Multi-scale testing and soft NMS improve mAP by 1.4

mAP on validation set
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I Further improvement

e Model ensemble improves mAP by 0.9
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I Tiny track experiments

e Baseline: Cascade R-CNN with ResNext101 64x4d pretrained on COCO
e Pretraining on Full Track dataset improves mAP by 4.2

mAP on validation set of Tiny Track
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I Tiny track experiments

e Other tricks improve mAP by 5.3

MAP on validation set of Tiny Track
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! Our final results

mAP

Validation set (Full track) 34.5
Test set (Full track) 31.1
Validation set (Tiny track) 34.8

Test set (Tiny track) 27.4



I Experiment details

e Basic setting

o Cascade R-CNN with 3 stages
o FPN
o Deformable convolution

e Backbones

o ResNeXt 101 64x4d / 32x8d
o SENet154
o Resnet152

e Training Pipeline and settings

o ImageNet pre-train — COCO pre-train for 12 epochs

o Full Track: training for 20 epochs (Ir 0.1 for 6 epochs, 0.01 for 10 epochs, 0.001 for 4 epochs)
o Tiny Track: fine-tuning for 10 epochs (Ir 0.1 for 4 epochs, 0.01 for 6 epochs)

o Batch size: 80 (2 imgs/GPU * 40 GPUs)



I Conclusion

e Data distribution matters

o Long tail distribution greatly degrades the overall performance
e Expert helps general model

o Expert model can improve APs for long tail classes
e General model also helps expert

o Large data pre-training helps the learning of long tail classes
e Long tail problem for object detection has not been solved
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We are hiring research scientists, software engineers, and interns in following
areas (@Beljing, Shanghai, Shenzhen):

Machine learning, natural language processing, computer vision, speech
recognition and synthesis, and distributed systems.

Email:lab-hr@bytedance.com
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